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Bioreactor optimization is a common engineering problem difficult to be solved due to the large number of
influential variables of high variability. Production of monoclonal antibody is a well-known method to
synthesize a large number of identical antibodies (that is of uniform characteristics, also called monoclonal
antibodies, mAb). Due to such reasons intense efforts have been invested to maximize the production of
mAb by using hybridoma cell culture. Based on an adequate kinetic model from literature (experimentally
checked) this paper focus on pointing-out the major role of the net evolution of the viable biomass (growth,
and decay) in the location of the optimal operating setpoint (SP) of a three-phase mechanically agitated
batch bioreactor (TPMAB) with immobilized hybridoma culture. This in-silico analysis opens the possibility
I) to optimize the bioreactor performances by placing the SP in the most favourable location, by adjusting
the substrate and biomass initial load in the bioreactor according to the preliminary determined
characteristics of a modified / improved biomass; ii) to optimize the batch-to-batch operation mode (not
approached here) according to the time-varying characteristics of the biomass culture, or iii) to determine
the optimal operation of the bioreactor in a fed-batch operating mode (not approached here).
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Over the last decades, there is a continuous trend to
develop more and more effective bioreactors[1,2] to
implement various biosyntheses for producing fine-
chemicals or organic compounds in the food,
pharmaceutical, or detergent industry, by using free-
suspended or immobilized cell cultures in batch, semi-
batch (fed-batch), continuously operated fixed-bed, or
continuously three-phase fluidized-bed (and/or
mechanically agitated) reactors, aiming to replace
complex chemical processes, energetically intensive and
generating toxic wastes [3,4]. It is to be mentioned, among
these, the fermentative processes for production of organic
acids, alcohols, vinegar, amino-acids/proteins, yeast,
hydrogen, food products and additives, recombinant
proteins/ antibodies, etc., by using bioreactors with
microbial / cell cultures [2,3], or bioreactors for waste
removal in water treatment plants [5], with various cooling
and aeration systems in simple or sophisticate constructive
alternatives [2], by integrating genetic and engineering
methods [6,7].

One application of tremendous importance in medicine
is the industrial production of monoclonal antibodies (that
is of uniform characteristics), by the so-called Hybridoma
technology, [8-10] by using antibody-secreting hybridoma
cell cultures. However, the large-scale production of mAb-
s by using mammalian cells in optimized batch, or fed-
batch culture systems (that is with continuous feeding of
GLC, and GLN substrates, or nutrients with variable
concentrations/feeding rates [10-12] is limited by
engineering problems related to associated to the model-
based optimization, that is: a) The presence of multiple
(often contrary) objectives [13]; b) An important degree
of uncertainty coming from multiple sources [14-19], such
as: model inaccuracies, variability of biomass activity,
presence of disturbances in the operating variables;
nonlinear dynamics of the bioprocess of low reproducibility.

And, most important, as remarked by Dorka[12]; Li et
al.[20], the large-scale production of monoclonal
antibodies (mAb) by mammalian cells in batch and fed-
batch culture systems is limited by the unwanted decline
in cell viability and reduced productivity that may result
from changes in culture conditions. Therefore, it becomes
imperative to gain an in-depth knowledge of the factors
affecting cell growth and cell viability that in turn determine
the antibody production  [20-21].

To support engineering calculations, several attempts
have been reported to obtain adequate dynamic models to
predict the behaviour of both batch, or fed-batch systems
as a function of the extra-cellular nutrient/metabolite
concentrations. Such model formulations will aid in
identifying and, eventually, in controlling the dominant
factors involved in the optimization of the mAb production.
More sophisticated bioprocess kinetic models try to also
explicitly include intra-cellular factors related to the cellular
metabolic fluxes [11,12,22], associated to the so-called
central carbon metabolism (CCM)[23]. Other optimization
approaches are focus on improving the fed-batch operation
by also accounting for the uncertainty in the model structure
and its parameters, that is, the so-called robust (stochastic)
optimization; see the review [24]. Most of the developed
kinetic models account for the inhibition/limitation effects
on the reaction rates due to various intra-/extra-cellular
metabolites, substrates, or by-products [25].

By adopting an adequate kinetic model (experimentally
checked) from literature [24], this paper is aiming at in-
silico investigating the influence of various operating
variables (that is, the initial glucose GLC, glutamine GLN,
and viable biomass Xv ) on the performances of a TPMAB
with immobilized hybridoma culture on porous alginate
beads [26,27]. As an element of novelty, an increased
attention is given to the major role played by the initial
load, and the net evolution of the viable biomass (growth,
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and decay) during the batch in the optimal operating
setpoint location. Such an in-silico analysis is done by
adding a term for enhanced biomass growth and decay to
the Liu and Gunawan model [24], thus deriving optimal
operating points.

This in-silico analysis opens the possibility to optimize
the bioreactor performances by placing the setpoint (SP)
in the most favourable location, by adjusting the substrate
and biomass initial load according to the characteristics of
the modified / improved biomass with an enhanced
evolution (with the below knet ≠ 0).

This in-silico analysis is also a valuable tool to determine
an optimal operation of the bioreactor based on the time-
varying characteristics of the biomass culture during the
batch [18,28], or during a batch-to-batch operation mode
(not approached here [29] ), or by adjusting the biomass
load in the bioreactor according to the time-varying
characteristics of the biomass culture, in a semi-continuous
operating mode (not approached here [30] ).

A separate preliminary determination of the biomass
kinetic characteristics  (see the below net  knet ≠ 0) in an
incipient stage of the bioprocess can lead to determine
the optimal operating policy of a batch (this paper), or of a
fed-batch bioreactor [28,31].

Optimization analysis is realized gradually, by considering
one control variable (i.e. initial concentration of GLC, or of
GLN), or by simultaneously considering two control
variables (i.e. initial concentrations of GLC, and GLN), or
three control variables (i.e. initial concentrations of GLC,
GLN, and of biomass Xν,o = Xt,o). Calculations are made
with considering the biomass basic characteristics of [24]
(with the below knet= 0), or considering a modified biomass
with an enhanced evolution (knet ≠ 0).

The parametric uncertainty associated to the biomass
dynamics models (not specified by [24]), is neglected here
to not complicate the computational analysis. Due to such
a reason, the predicted optimal operating policy by the
math model cannot be realized with a perfect certainty.
However, when significant inconsistecies vs. experimental
evidence are reported, such checks will lead to the process
lumped model updating/completions, and re-estimation
of some of their parameters for correcting its adequacy in
order to perform futures bioreactor analyses, and to
eventually correct its optimal operating policy. To partly
avoid such problems various alternatives are suggested in
the literature, such as an observer-based robust control
strategy for controlling overflow metabolism cultures
operated in fed-batch mode in order to maximize the
biomass productivity [18,28-29,31], even if their
implementation is difficult and costly.

Bioprocess / bioreactor dynamic model
Bioprocess kinetic model

A typical stirred tank bioreactor is equipped with
temperature, pressure, agitation, pH, and DO control
systems[1-2]. The relatively simple dynamic ideal model
of the TPMAB describing the key-species dynamics is
presented in Table 2. The ideal model main hypotheses
are the followings: I) isothermal, iso-pH, iso-DO operation;
ii) nutrients[25] are added initially and during TPMAB
operation to ensure the optimal maintenance of the
biomass, in a recommended C/N/P ratio of ca. 100/5/1
wt.[5]; iii) aeration in excess over the batch to ensure an
optimal biomass maintenance; iv) perfectly mixed liquid
phase, of quasi-constant volume; v) negligible mass
resistance to the transport of nutrients/substrates/products
in the porous alginate beads; vi) negligible mass resistance
to the transport of oxygen into the liquid and beads; vii)
substrates, and the solid carrier (of a millimeter size)
including the immobilized biomass are initially added in
the batch bioreactor; viii) the solid particles (of uniform
characteristics) are considered uniformly distributed in the
homogeneous liquid phase, due to the well-mixing
conditions.

The batch bioreactor is considered here in the alternative
with using immobilized biomass from several reasons: I)
due to the reported biomass higher stability [26,32], and ii)
to eventually consider its fed-batch operation {not
approached in this paper [30]}.

The adopted kinetic model for mAb production by using
hybridoma cell culture is presented in Table 2 together with
the associated rate constants. This dynamic model [24],
was experimentally validated by [33], and others. Due to
such a reason, one expect that the present in-silico analysis
of the batch bioreactor to provide results of a satisfactory
predictive value.

From the mathematical point of view, the bioreactor
dynamic model translates in a set of differential mass
balances for every considered species, of the form:

  (1)

with the reaction rate rj  expressions given in Table 2. To get
the key-species (j) dynamics over the batch time (tf ), the
model (1) is solved with a proposed initial condition Cj,o =
Cj(t=0), under the best medium conditions of Table 1. To
get the solution with enough precision, a low-order stiff
integrator (ODE23S) of the Matlab™ package was used.

Table 1
THE NOMINAL OPERATING

CONDITIONS (SPN) OF LIU AND
GUNAWAN [24] FOR THE BATCH
BIOREACTOR WITH SUSPENDED
MAMMALIAN HYBRIDOMA CELL

CULTURE
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Biomass dynamics model
As the biomass dynamics plays the principal-role in the

all reported kinetic models for the production of mAb by
using hybridoma cell cultures, the rate expressions
proposed in the literature for the biomass growth/death
are of a Monod-type, by including terms accounting for
inhibitions and limitations given by metabolites, substrates,
or by-products [11, 24, 34-36], i.e:

(2)

Terms f(ξ(t)), g (ξ(t)) are complex functions accounting
for the biomass growth, or death inhibition respectively,
due to various extra-cellular species, i.e. GLC, GLN, LAC,
AMM, etc.[12,24,34-36], or intra-cellular metabolites [22]
related to the so-called central carbon metabolism (CCM).
More structured models by accounting for CCM are also
developed by [37].

Other authors [25,35] proposed empirical kinetic forms
for the cell growth and death. Regardless the approach,
the initial cell density and the medium characteristics
clearly play the central role on the hybridoma growth,
metabolism, and mAb production yield [22,38].

To better highlight this prevailing role plays by the
biomass growth/death rates on how to choose the
bioreactor optimal operating conditions, one
supplementary knet  term has been introduced in this paper
in the biomass balance, the eqn.(2) becoming:

(3)

where the lumped kgXν, and  kdXν  terms, include the
enhanced biomass specific growth rate (kg), and the
enhanced biomass specific death rate (kd). These two

Table 2
KEY-SPECIES MASS BALANCES IN THE BATCH BIOREACTOR MODEL TOGETHER WITH THE ASSOCIATED RATE CONSTANTS [24]
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terms account for conditions others than those considered
in the usual terms  f(ξ(t)), g (ξ(t)). Several values of the
net biomass evolution rate knet = kg - kd  will be tested in
this study, according to the literature information. The
biomass enhanced evolution  might be explained by lot of
operating variables not included in the common dynamic
models of eq.(2) form. Such variables could include [9,36]:
the biomass Xnquality, immobilization type, etc
[9,26,27,39].

To in-silico study how the location of the optimal setpoint
in the parametric space is directly influenced by the
biomass evolution, a term knet  accounting for the enhanced
(modified / improved) biomass characteristics (growth,
and decay) was added to the Liu and Gunawan [24] model,
and the derived optimal operating points were compared.

Common values for the biomass maximum specific
growth rate (kg) and maximum specific death rate (kd)
are given in Table 3. According to these reported values,
the following values for the knet will be tested in the present
study (in 1/h units to be in agreement with the similar
constants of Table 2):

A separate determination of the biomass kinetic
characteristics  (that is the net knet ≠ 0) in an incipient
stage of the bioprocess can lead to determining an optimal
operating policy of a batch or of a fed-batch bioreactor.
The bioreactor nominal setpoint SPN, presented in Table 1,
is those of [24]. For this reference setpoint, the biomass
evolution is governed by only f(ξ(t)), g (ξ(t))  terms of
eq.(2).

When significant inconsistecies between predicted
optimal operating policy vs. experimental evidence are
reported, such checks will lead to the process lumped
model updating/completions, and re-estimation of some
of their parameters for correcting its adequacy in order to
perform futures bioreactor analyses, and to eventually
correct its optimal operating policy.

Bioreactor optimization results
Formulation of the optimization problem

For the present case study, to determine the optimal
running conditions of the TPMAB of Table 1, that maximize
the mAb production by the used hybridoma cell culture,
several control variables could be considered. These
parameters are physical, chemical and biological in nature
[20], as followings: I) inoculum size, that is initial cell

density, Xν0 [22]; ii) substrates initial concentrations,
[GLC](0), [GLN](0) [24]; iii) an optimal feeding policy of
the fed-batch bioreactor with substrates and nutrients to
control the biomass evolution (not for the batch case
here)[12]; iv) an optimal feeding policy with immobilized
viable biomass Xν,0(t) of the fed-batch bioreactor, with an
incremental addition policy to compensate the exponential
decay of the viable biomass in the bioreactor due to its
degradation and/or washout from the alginate-carrier (not
for the batch case here)[30].

Because not all the mentioned control variables are
included in the adopted bioprocess dynamic model [24],
the present paper will be focus on determining the following
three control variables under certain operating alternatives:
I) substrates initial concentrations, [GLC](0), [GLN](0); ii)
inoculum size (that is initial cell density, Xν,0(t); due to
inoculum preparation reasons, the total initial biomass will
be considered equal to the viable one, Xν,0(=Xt,0).

In mathematical terms, the optimization problem can
be formulated as following:

where the mAb(t) time-evolution is determined by solving
the bioreactor dynamic model eqn.(1) with a proposed
initial condition Cj,o=Cj,j(t=0), and for an imposed batch
time (tf), and optimal medium conditions (temperature,
pH, DO, nutrients) of Table 1. Notations: C = species conc.
vector; Co= species initial conc.; k= model rate constants.

In-silico analysis results
Optimization analysis is realized gradually, by considering

one control variable (that is the initial concentration of GLC,
or GLN), or simultaneously two (initial concentrations of
GLC, and GLN), or simultaneously three control variables
(initial concentrations of GLC, and GLN, and of Xν,0=Xt,0)
with the biomass basic characteristics of [24]. Finally, the
optimal policy given by searching over the three-control
variables was reconsidered by using a modified / improved
biomass with an enhanced evolution (with ), and the results
compared.

The reference setpoint for our in-silico analysis is the
bioreactor nominal setpoint SPN [24] presented in Table 1.
For this SPN, the biomass evolution is governed by only the
common terms of eq.(2), with no enhanced process (that
is knet=0). The key-species dynamics is plotted in Figure 1,
with a realized  Max[mAb](t) = 1254.6 (mg/L) at the batch
end tf=103 h (Table 4) in concordance with those reported
by [24].

Table 3
TYPICAL VALUES FOR THE BIOMASS MAXIMUM

SPECIFIC GROWTH RATE (kg) AND OF THE MAXIMUM
SPECIFIC DEATH/ DECAY RATE (kd)  IN THE EQN.(3)

(4)
(5)
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To summarize our calculations, the following
optimization alternatives have been performed for  knet=0
case:

Optimization type 1-D. Control variables: [GLC](0), or
[GLN](0), or Xν,0=Xt,0. Results: SP1, and SP2. Displayed
results in Figure 2 and Table 4. Observation: Max (mAb)
increases with the increase of [GLC](0), or Xν,0, but it
presents a maximum vs. [GLN](0).

Optimization type 2-D. Control variables: [GLC](0),
simultaneously with [GLN](0). Results: SP3. Displayed
results in Figure 2D and Table 4. Observation: mAb presents
a maximum in the [GLC](0) - [GLN](0) plane.

Optimization type 3-D. Control variables: [GLC](0),
simultaneously with [GLN](0), and Xν,0. Results: SP4.
Displayed results in Figure 3 and Table 4. Observation:
Optimal policy SP4 indicates the best bioreactor
performance. For 2-D and 3-D optimization problems (5),
the effective multimodal optimization solver MMA of Maria
[40,41] has been used implemented in the Matlab™
computation platform, to prevent the search collapse in a
possible local optimum.

For the biomass enhanced evolution (with knet≠ 0) case,
several alternatives have been investigated, corresponding
to certain medium conditions, not explicitly considered in
the adopted dynamic model [24], or due to a modified
biomass. The enhanced evolution refers either to an
enhanced biomass growth with a maximum specific
growth rate kg higher than µmax in Table 2, or to an enhanced
biomass decay due to its degradation and/or washout from
the carrier with a maximum specific decay rate kd higher
than µd,max  in Table 2.

Such medium conditions not considered in the bioreactor
model could be each of the following parameters: the
temperature, the gas flow rate, agitation speed, DO,
dissolved CO2, pH, osmolality, waste by-products, etc.[20].
To account for such alternatives, kne values of eqn. (4) have
been tested. Simulation results have been comparatively
presented in Figure 4, in terms of the realized Max(mAb)
dependence on the initial conditions [all three control
variables (5)], for  knet=0 (SPN), knet=+0.1 (enhanced
biomass growth), and knet=-0.1 (quick biomass decay).

By analysing all the optimization result alternatives ,
several conclusions can be derived:

Fig. 2. Dependence of the realized
Max[mAb](t) by the batch

bioreactor of [24] [table 1, with
knet=0], function of: (A) initial

[GLC](0), including SP1, (B) initial
[GLN](0), including SP2, (C) initial

Xν,0=Xt,0, and (D) both initial
[GLC](0), and initial [GLN](0),

including SP3.

Fig. 1. Key species dynamics for the
nominal setpoint (SPN) of the batch

TPMAB of [24] given in table 1.
(with no enhanced biomass.

evolution, that is knet=0 in table 2)
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Table 4
MODEL-BASED DERIVED OPTIMAL SETPOINTS FOR THE [24] BATCH BIOREACTOR WITH IMMOBILIZED MAMMALIAN HYBRIDOMA CELL

CULTURE, FOR THE ORIGINAL CHARACTERISTICS OF THE BIOMASS ( 0knet = , IN TABLE 2). NOTE: THE MEDIUM CHARACTERISTICS ARE
THOSE GIVEN BY [24] IN TABLE 1

Fig. 4. Dependence of the realized Max[mAb(t) by the batch bioreactor of [24], for an enhanced biomass evolution, that is for: (black line 1)
knet=0 (SPN of [24], (blue line 2) knet=+0.1 (enhanced biomass growth), (red line 3) knet=-0.1 (quick biomass decay). Notation (0) indicates
the initial condition. Plots of  are made: (A) function of initial , for = 4.9 mM, = 2×108 Cell/L; (B) function of initial , for = 29.1 mM, = 2×108

Cell/L; (C) function of initial , for = 4.9 mM, = 29.1 Mm; (D) function of both initial , and initial , for = 2×108 Cell/L

Fig. 3. Key species dynamics for the
optimal setpoint SP4 (with knet=0) of
the batch bioreactor, with the initial

conditions specified in Table 4
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a)the 1-D optimal setpoints SP1- SP2 reported better
performances compared to the SPN of [24], even if only
one control variable was considered;

b)the 3-D optimal setpoint SP4 reported better
performances compared to SPN, or SP1-SP3, because all
control variables were simultaneously considered (default
knet=0);

c)the results displayed in Figure 4, for  knet≠ 0 proved the
key role of the biomass evolution regarding the bioreactor
performance. Thus, an enhanced biomass growth with
knet=+0.1 reported performances better with several orders
of magnitude compared to the SPN with knet=0. On the
contrary, an enhanced biomass decay with knet=-0.1
reported performances with at least one-order of
magnitude worse compared to the SPN with knet=0.

d)By comparing the 2-D optimal operating region
location Max(mAb) given in Figure 2D for SPN, and in Figure
4D for knet=-0.1 (quick biomass decay), it clearly appears
that location of the optimal setpoint is moving according
to the net evolution of the biomass (knet≠ 0), even if the
initial load of biomass (Xν,0 = Xt,0) is the same (those of
Table 1).

To partly avoid optimal policy implementation problems,
various alternatives are suggested in the literature. For
instance, an observer-based robust control strategy for
controlling overflow metabolism cultures operated in fed-
batch mode in order to maximize the biomass productivity
[31,46], or on-line optimal operation based on the time-

varying characteristics of the biomass culture during the
batch [18,28,30,46], or during a batch-to-batch operation
mode [29], or by adjusting the biomass load in the
bioreactor according to the time-varying characteristics
of the biomass culture, in a semi-continuous operating
mode [30].

Conclusions
This paper proves in a relatively simple yet eloquent way

how a lumped, but enough detailed and adequate dynamic
model of an important bioprocesses can support in silico
engineering evaluations, if the cell nano-scale metabolism
(including metabolic by-products) is somehow reflected
by the bioreactor macro-scale dynamic model.

A separate determination of the  knet≠ 0.1in an incipient
stage of the bioprocess can lead to determining an optimal
operating policy of a fed-batch bioreactor. Once validated,
such valuable model-based predictive analyses will lead
to develop a model-based control and optimization of the
batch or fed-batch (not approached here) bioreactor
operation [11].

In such a way, the significant large experimental and
computational effort to elaborate such hybrid cell/
bioreactor models of good quality is fully justified through
the benefits of subsequent in silico analyses (as is also the
case here).

Nomenclature

References
1. MOSER, A., Bioprocess technology - Kinetics and reactors, Springer
Verlag, Berlin, 1988.
2. GHOSE, T.K., FIECHTER, A., BLAKEBROUGH, N., Advances in
Biochemical Engineering, Springer Verlag, Berlin, 1977-1978.; vol. 7-
10.
3. LIESE, A ., SEELBACH, K., WANDREY, C., Industrial bio-
transformations, Wiley, Weinheim, 2006.
4. MARIA, G., Enzymatic reactor selection and derivation of the optimal
operation policy by using a model-based modular simulation platform,
Comp. Chem. Eng. 36, 2012, p. 325.

5. NEGULESCU, M., Municipal waste water treatment, Elsevier,
Amsterdam, 1985.
6. BUCHHOLZ, K., HEMPEL, D.C., From gene to product, Eng. Life Sci.
6, 2006, p.437.
7. HEMPEL, D.C., Development of biotechnological processes by
integrating genetic and engineering methods, Eng. Life Sci. 6, 2006,
p. 443–447.
8. WIKIPEDIA. Hybridoma technology, (Last edited page on 16 May
2018, at 10:55).
9. LEE, G.M., VARMA, A., PALSSON, B.O., Production of monoclonal
antibody using free-suspended and immobilized hybridoma cells,
Biotech. Bioeng. 38, 1991, p.821-830.



http://www.revistadechimie.ro REV.CHIM.(Bucharest)♦70♦ No. 8 ♦20192992

10. HAUSER, H., WAGNER, R., Mammalian cell biotechnology in protein
production, Walter de Gruyter publ., New York, 1997.
11. KONTORAVDI, C., PISTIKOPOULOS, E.N., MANTALARIS, A.,
Systematic development of predictive mathematical models for animal
cell cultures, Comp. Chem. Eng., 34, 2010, p. 1192.
12. DORKA, P., Modelling batch and fed-batch mammalian cell cultures
for optimizing MAb productivity, MSc diss., University of Waterloo,
Canada, 2007.
13. MARIA, G., CRISAN, M., Operation of a mechanically agitated semi-
continuous multi-enzymatic reactor by using the Pareto-optimal
multiple front method, J. Proc. Control 53, 2017, p. 95-105.
14. BONVIN, D., Optimal operation of batch reactors, J. Proc. Control
8, 1998, p. 355-368.
15. SMETS, I.Y., CLAES, J.E., NOVEMBER, E.J., BASTIN, G.P., VAN IMPE,
J.F., Optimal adaptive control of (bio)chemical reactors: past, present
and future, J. Proc. Control, 14, 2004, p. 795-805.
16. MARIA, G., CRISAN, M., Evaluation of optimal operation alternatives
of reactors used for D-glucose oxidation in a bi-enzymatic system
with a complex deactivation kinetics, Asia-Pacific Journal of Chemical
Engineering, 10, 2015, p. 22-44.
17. MARIA, G., A dynamic  model to simulate the genetic regulatory
circuit controlling the mercury ion uptake by E. coli cells, Revista de
Chimie(Bucharest),  61, no.2, 2010, p. 172-186.
18. BINETTE, J.C., SRINIVASAN, B., On the use of nonlinear model
predictive control without parameter adaptation for batch processes,
Processes, 4, 2016, p. 27.
19. MARIA, G., Process identification and model-based operating
policies for an enzymatic fed-batch reactor of rare sugar production,
Rev. Chim. (Bucharest), 56, no. 11, 2005, p. 1078-1084.
20. LI, F., VIJAYASANKARAN, N., SHEN, A., KISS, R., AMANULLAH, A.,
Cell culture processes for monoclonal antibody production, mAbs,
2, 2010; p. 466-477.
21. BUCKLAND, B.C., Cell culture engineering. IV. Improvements of
human health, Springer science and business media, Berlin, 2013.
22. OZTURK, S.S., PALSSON, B.O., Effect of initial cell density on
hybridoma growth, metabolism, and monoclonal antibody production,
J. Biotech. 16, 1990, p. 259-278.
23. MARIA, G., In-silico design of Genetic Modified Micro-organisms
(GMO) of industrial use, by using Systems Biology and (Bio)Chemical
Engineering tools, Juniper publ., Simi Valley, California (USA), 2018.
24. LIU, Y., GUNAWAN, R., Bioprocess optimization under uncertainty
using ensemble modelling, Journal of Biotechnology 244, 2017, p.
34–44.
25. VENABLES, D., Two stage chemostat studies of hybridoma growth,
nutrient utilization, and monoclonal antibody production, PhD thesis,
Univ. of Surrey (MI), 1994.
26. SELIMOGLU, S.M., ELIBOL, M., Alginate as an immobilization
material for Mab production via encapsulated hybridoma cells, Critical
Rev. Biotech., 30, 2010, p. 145.
27. SELIMOGLU, S.M., AYYILDIZ-TAMIS, D., GURHAN, I.D., ELIBOL, M.,
Purification of alginate and feasible production of monoclonal
antibodies by the alginate-immobilized hybridoma cells, Journal of
Bioscience and Bioengineering, 113, 2012, p. 233-238.
28. DEWASME, L., AMRIBT, Z., SANTOS, L.O., HANTSON, A.L.,
BOGAERTS, P., WOUWER, A.V., Hybridoma cell culture optimization
using nonlinear model predictive control, 12th IFAC Symp. Comput.
Appl. Biotech., 16-18, Dec.2013, Mumbai, India.
29. DEWASME, L., COTE. F., FILEE, P., HANTSON, A.L., WOUWER,
A.V., Macroscopic dynamic modeling of sequential batch cultures of
hybridoma cells: An experimental validation, Bioengineering, 4, 2017,
p. 17.

30. SCOBAN, A.G., MARIA, G., Optimization of the feeding policy of a
fluidized bed bioreactor for mercury uptake by immobilized P. putida
cells, Asia-Pacific J. Chem. Eng. 11, 2016, p. 721.
31. PIMENTEL, G.A., BENAVIDES, M., DEWASME, L., COUTINHO, D.,
WOUWER, A.V., An observer-based robust control strategy for overflow
metabolism cultures in fed-batch bioreactors, IFAC-PapersOnLine,
48-8, 2015, p. 1081–1086.
32. LEE, G.M., PALSSON, B.O., Enhanced specific antibody productivity
of calcium alginate-entrapped hybridoma is cell line specific,
Cytotechnology, 16, 1994, p. 1–15.
33. KIPARISSIDES, A., KOUTINAS, M., KONTORAVDI, C., MANTALARIS,
A., PISTIKOPOULOS, E.N., Closing the loop in biological systems
modeling—from the in silico to the in vitro, Automatica, 47, 2011, p.
1147–1155.
34. BREE, M.A., DHURJATI, P., GEOGHEGAN, R.F., ROBNETT, B. JR.,
Kinetic modelling of hybridoma cell growth and immunoglobulin
production, Biotech. Bioeng, 32, 1988, p. 1067.
35. ZENG, A.P., DECKWER, W.D., HU, W.S., Determinants and rate
laws of growth and death of hybridoma cells in continuous culture,
Biotech. Bioeng., 57, 1998, p. 642-654.
36. LEE, Y.K., YAP, P.K., TEOH, A.P., Correlation between steady-state
cell concentration and cell death of hybridoma cultures in chemostat,
Biotech. Bioeng. 45, 1995, p. 18-26.
37. QUIROGA-CAMPANO, A.L., PANOSKALTSIS, N., MANTALARIS, A.,
Energy-based culture medium design for biomanufacturing
optimization: A case study in monoclonal antibody production by GS-
NS0 cells, Metabolic Engineering, 47, 2018, p. 21-30.
38. OZTURK, S.S., Kinetic characterization of hybridoma growth,
metabolism, and monoclonal antibody production rates, PhD thesis
9023613, Univ. of Michigan, 1990.
39. ASLANKARAOGLU, E., GUMUSDERELIOGLU, M., GURHAN, S.,
Hybridoma cells immobilized on nonwoven polyester fabric discs:
proliferation and monoclonal antibody production in stationary culture.
J. Biomater. Appl., 18, 2003, p. 137-148.
40. MARIA, G., ARS combination with an evolutionary algorithm for
solving MINLP optimization problems, In: HAMZA, M.H. (Ed.),
Modelling, Identification and Control, IASTED/ACTA Press, Anaheim
(CA), 2003, p. 112-118.
41. MARIA, G., A review of algorithms and trends in kinetic model
identification for chemical and biochemical systems, Chem. Biochem.
Eng. Q., 18, 2004, p. 195-222.
42. KUMAR, A., KUMAR, S., KUMAR, S., Biodegradation kinetics of
phenol and catechol using Pseudomonas putida MTCC 1194, Biochem.
Eng. J., 22, 2005, p. 151–159.
43. JIANLONG, W., HANCHANG, S., YI, Q., Wastewater treatment in a
hybrid biological reactor (HBR): effect of organic loading rates, Proc.
Biochem. 36, 2000, p. 297–303.
44. GOERGEN, J.L., MARC, A., ENGASSER, J.M., Determination of cell
lysis and death kinetics in continuous hybridoma cultures from the
measurement of lactate dehydrogenase release, Cytotechnology, 11,
1993, p. 189-195.
45. PELLETIER, F., FONTEIX, C., DA SILVA, A.L., MARC, A., ENGASSER,
J.M., Software sensors for the monitoring of perfusion cultures:
Evaluation of the hybridoma density and the medium composition
from glucose concentration measurements, in: BUCKLAND, B.C. (Ed.),
Cell culture engineering, IV. Improvements of human health, Springer
science and business media publ., Dordrecht, 2013, p.291-299.
46. ENGASSER, J.M., Bioreactor engineering: The design and
optimization of reactors with living cells, Chemical engineering
science, 43, 1988, p. 1739- 1748.

Manuscript received: 25.10.2018



REV.CHIM.(Bucharest)♦70♦No. 8 ♦2019 http://www.revistadechimie.ro 2710



http://www.revistadechimie.ro REV.CHIM.(Bucharest)♦70♦ No. 8 ♦20192711



REV.CHIM.(Bucharest)♦70♦No. 8 ♦2019 http://www.revistadechimie.ro 2712



http://www.revistadechimie.ro REV.CHIM.(Bucharest)♦70♦ No. 8 ♦2019



REV.CHIM.(Bucharest)♦70♦No. 8 ♦2019 http://www.revistadechimie.ro



http://www.revistadechimie.ro REV.CHIM.(Bucharest)♦70♦ No. 8 ♦2019


